低成本微流控芯片键合技术
除纸基微流控芯片可以采用开放式流道外,其他各类型微流控芯片在微结构加工完成后都需要在流道上方覆盖一层材料(盖片)完成流道的封闭,即微流控芯片的键合。盖片材料与基底材料可以是同类、同厚度材料,特殊用途时也可对不同类型和厚度的材料进行键合。不同于超净间内使用精密仪器设备完成的硅、玻璃芯片间的键合,近年来,研究者提出了各类低成本的微流控芯片键合方法,主要包括热压键合(thermal compression bonding)、粘合(adhesive bonding)、表面氧等离子处理键合(plasma surface treatment)以及激光焊接(laser welding)等,如图1所示。
图1常见微流控芯片键合方法
热压键合
热压键合图1(a)是基于PMMA、PC、PS、COC/COP等热塑性材料微流控芯片较为理想的键合方法,待键合的两层材料接触并对准后,通过同时加热加压的方式完成芯片键合,加热温度略高于热塑性塑料的玻璃化温度(Tg),压力则可根据实际情况进行设定。研究者在使用热压方法对微流控芯片进行键合的领域进行了较为深入的探索,完成了PMMA/PMMA、PMMA/PS、COC/COC等材料在不同温度和压力下键合强度的研究。热塑性材料使用热压键合最常出现的失败情况是由于温度或者压力过高导致键合过程中微结构发生坍塌,实际使用中一方面需要严格控制温度和压力的设定,另一方面也可使用氧等离子或紫外光对材料表面进行预处理,降低聚合物材料待键合表面的分子量以降低表面的玻璃化温度。
粘性键合
粘性键合图1(b),是指在芯片基底材料上添加一层粘性材料,再覆盖盖片进行键合。这里的粘性材料通常是具有紫外固化性质的材料(如SU-8、干膜等),需要经过紫外曝光实现基底和盖片材料的键合。此外,非紫外固化材料如蜡也可以用来进行简易的芯片键合。除使用粘性材料外,还可在待键合材料的接触面上涂覆一层有机溶剂,通过有机溶剂材料对表面的部分溶解实现键合,缺点在于粘性材料或有机溶剂键合后在微流道内有残留,与流道内液体接触后会溶解到实验溶液中,可能严重影响实验结果。
氧等离子表面处理键合
具有微结构的PDMS基片通常使用氧等离子体对表面进行处理后与PDMS、玻璃、PMMA、PC等材料进行键合图1(c)。如果使用PDMS、玻璃或硅材料的盖片,PDMS基片与盖片需要同时进行氧等离子表面处理,从低成本加工的角度看,氧等离子表面处理设备的成本较高,实际应用中如果不具备设备条件也可使用低成本的手持式等离子电晕设备代替氧等离子表面处理。使用氧等离子表面处理对基于PDMS材料的微流控芯片进行键合,其优势在于:表面清洁无污染、键合速度较快;其劣势在于芯片清洗等操作较为复杂,且设备成本较高。
从芯片键合技术发展看,目前可逆(reversible)键合和混合(hybrid)材料键合领域的研究最为活跃。研究者尝试了各种物理和化学方法实现PDMS等材料的可逆键合,以及PDMS /SU-8等物理化学性质完全不同材料间的混合键合。
结论
针对分析化学和生命科学领域,介绍现阶段低成本微流控芯片材料和加工领域的最新技术和成果。介绍的各类低成本微流控芯片及其加工方法都是可以通过化学和生物实验室的常见材料和仪器设备加工完成的,对于分析化学和生命科学领域希望使用微流控芯片的研究者具有实践意义。
免责声明:文章来源网络 以传播知识、有益学习和研究为宗旨。 转载仅供参考学习及传递有用信息,版权归原作者所有,如侵犯权益,请联系删除。
标签:   微流控芯片