微流控技术的应用
基于微流控芯片的代表性关键技术
① 微流控分析芯片是新一代床旁诊断(Point of care testing, POCT)主流技术,可直接在被检对象身边提供快捷有效的生化指标,使现场检测、诊断、治疗成为一个连续的过程;
② 微流控反应芯片以液滴为代表,是迄今为止最重要的微反应器,在高通量药物筛选,单细胞测序等领域显示了巨大的威力;
③ 微流控细胞/器官操控芯片是哺乳动物细胞及其微环境操控最重要技术平台,渴望部分代替小白鼠等动物模型,用于验证候选药物,开展药物毒理和药理作用研究。
1、新一代床旁诊断(POCT)技术——Microfluidics-based POCT
POCT可直接在被检者身边提供快捷有效的生化指标,现场指导用药,使检测、诊断、治疗成为一个连续过程,对于疾病的早期发现和治疗具有突破性的意义。
POCT仪器发展趋势应是小型化、“傻瓜”式,操作简单,无需专业人员,直接输入体液样本,即可迅速得到诊断结果,并将信息上传至远程监控中心,由医生指导保健。目前,市场上有多种即时诊断方法,简单的流动测试工作没有流体管理技术,而当测试复杂性增加时,微流控技术是必要的。
微流控芯片所具有的多种单元技术在微小可控平台上灵活组合和规模集成的特点已使其成为现代POCT技术的首选,经过近年的发展,已涌现了一批微流控芯片POCT分子诊断和免疫诊断的成功案例。
2、PCR-微流控芯片CE
微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等 。其中电压驱动的毛细管电泳(Capillary Electrophoresis , CE) 比较容易在微流控芯片上实现,因而成为其中发展最快的技术。
它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。
国际上公认的PCR 产物检测共有五种方法,按其灵敏度高低顺序排列为:毛细管电泳法、固相杂交法、液相杂交法、高压液相杂交法和凝胶电泳法(不推荐临床) 。
微流控芯片CE 以毛细管电泳为该芯片主体,无需进行探针杂交,受检样品的信号获得率接近百分之百。
微流控芯片CE 可检测15~7500bp范围的PCR 产物,分辨率可达20bp ,样品微量化使扩散进一步减少,分离效果极好,每孔可供多个不同的PCR 产物作同时分析。
目前其应用主要集中在核酸分离和定量、DNA 测序、基因突变和基因差异表达分析等。另外,蛋白质的筛分在微流控芯片中也已有报道针对病原微生物基因组的特征性片段、染色体DNA 的序列多态型基因变异的位点及特征等,设计和选择合适的核酸探针,经PCR 扩增后检测,就能获得病原微生物种属、亚型、毒力、抗药、致病、同源性、多态型、变异和表达等信息,为疾病的诊断和治疗提供一个很好的切入点。
自1992 年微流控芯片CE 首次报道以来,进展很快。首台商品仪器是微流控芯片CE ( 生化分析仪,Aglient) ,可提供用于核酸及蛋白质分析的微流控芯片产品。
3、哺乳动物细胞及其微环境操控平台——微流控芯片仿生实验室
由于微流控芯片的构件尺寸和细胞吻合,并可同时测定物理量、化学量和生物量,它已成为对哺乳动物细胞及其微环境进行操控的最具潜力的平台。
目前已可以构建微米量级且相对封闭的三维细胞培养、分选、裂解等操作单元,并把这些单元成功延伸到组织和器官。
器官芯片是一种更接近仿生体系的模式,可在一块几平方厘米的芯片中培养各种活体细胞,形成组织器官,乃至由不同器官芯片进一步组成活体芯片,从而模拟一个活体的行为并研究活体中整体和局部的种种关系。
在药学领域,器官芯片将被部分替代小白鼠等模型动物,用于验证候选药物,开展毒理和药理作用研究。
微流控芯片技术作为一种新兴的技术手段,已经从最初单纯的毛细管电泳的微型化技术,演变成为一种涵盖了从基础生物技术到生物医学诊断等各个领域的富有活力的工具性方法平台。
随着微流控芯片技术的不断发展,微流控芯片技术与其他的代表性技术会在更为广泛的研究领域中交叉渗透,快速发展,而且也会更加直接地深入到人们的日常生活甚至平常使用的器件当中。
阻碍微流控技术发展的瓶颈包括制造加工、集成度以及与宏观系统的接口等应用方面的问题。今后微流控芯片会朝着分析成分的多样化、制作基材的多样化、研究方法的多样化和系统的微型化与集成化的方向发展。
集中在大规模、高通量、低消耗的生命科学和分析化学实验中,包括单细胞培养与分析、干细胞操控与培养、单分子生物物理学、高通量的细胞与分子生物学筛选实验、药物发现、高通量合成生物学、高通量测序技术、单细胞基因组学等。
基于微流控人体体液的生化分析也特别适合目前大火的互联网医疗。 智能检测或诊断的医疗器械终端(家用)与互联网的大数据结合,这一块也将大大的推进了人类医疗健康系统的发展。
免责声明:文章来源网络 以传播知识、有益学习和研究为宗旨。 转载仅供参考学习及传递有用信息,版权归原作者所有,如侵犯权益,请联系删除。
标签:   微流控芯片